Review

Synaptically released zinc: Physiological functions and pathological effects

Christopher J. Frederickson^{1,*} & Ashley I. Bush²

¹NeuroBioTex, Inc., Biomedical Engineering and Anatomy and Neuroscience, The University of Texas Medical Branch, Galveston, Texas, USA; ²Laboratory for Oxidation Biology, Harvard Medical School, Boston, Massachusetts, USA; *Author for correspondence (Tel: 409-762-0678; Fax: 866-422-4403; E-mail: cjfrederickson@hotmail.com)

Received 17 April 2001; accepted 8 May 2001

Abstract

In addition to its familiar role as a component of metalloproteins, zinc is also sequestered in the presynaptic vesicles of a specialized type of neurons called 'zinc-containing' neurons. Here we review the physiological and pathological effects of the release of zinc from these zinc-containing synaptic terminals. The best-established physiological role of synaptically released zinc is the tonic modulation of brain excitability through modulation of amino acid receptors; prominent pathological effects include acceleration of plaque deposition in Alzheimer's disease and exacerbation of excitotoxic neuron injury. Synaptically released zinc functions as a conventional synaptic neurotransmitter or neuromodulator, being released into the cleft, then recycled into the presynaptic terminal. Beyond this, zinc also has the highly unconventional property that it passes into postsynaptic neurons during synaptic events, functioning analogously to calcium in this regard, as a transmembrane neural signal. To stimulate comparisons of zinc signals with calcium signals, we have compiled a list of the important parameters of calcium signals and zinc signals. More speculatively, we hypothesize that zinc signals may loosely mimic phosphate 'signals' in the sense that signal zinc ions may commonly bind to proteins in a lasting manner (i.e., 'zincylating' the proteins) with consequential changes in protein structure and function.

Overview

Although it was Maske (1955) who first discovered 'stainable' (i.e., weakly bound) zinc in the brain (Figure 1), it was actually Turner McLardy who introduced the notion of synaptic zinc. For it was he who realized in the late 1950's that the swath of bright red zinc-dithizonate staining in the hippocampal formation of the brain was exactly coextensive with the peculiar 'mossy' axons that connect the dentate gyrus to ammon's horn (see McLardy 1970). The electronmicrographs of Finn-Mogens Haug (1967) later showed that this peculiar, 'stainable', pool of zinc was located exactly and exclusively in the presynaptic vesicle regions of synaptic terminals (Figure 2).

Two developments since have carried the concept of 'synaptic zinc signals' from neuroscience heresy to dogma (Baranano *et al.* 2001; Weiss & Sensi 2000; Weiss *et al.* 2000). First, Danscher and colleagues

have adduced incontrovertible evidence that the stainable zinc in the brain is virtually without exception located in the synaptic vesicles of presynaptic boutons, a finding which has allowed the histochemical methods to be used to study the synaptic pool (Danscher 1996; Franco-Pons et al. 2000). Second, Palmiter and his co-workers have identified a specific zinc-transporter protein (ZnT-3) that pumps zinc into vesicles and is co-localized with vesicular zinc, on the membranes of synaptic vesicles in the Golgi apparatus, axons, and presynaptic boutons of zinc-containing CNS neurons (Palmiter et al. 1996). Because the ZnT-3 knockouts have no stainable zinc in their presynaptic vesicles (Cole et al. 1999), there is essentially no remaining doubt that the stainable zinc in synaptic terminals and the ZnT-3-dependent, presynaptic vesicular zinc pool are one and the same.

In the brain, the only neurons that have vesicular zinc (i.e., stainable zinc) are glutamatergic (Beaulieu

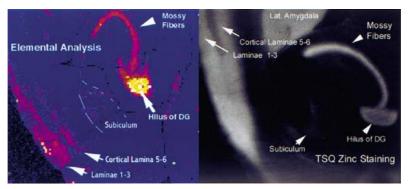


Fig. 1. The left image shows synchrotron-radiation-induced x-ray fluorescence of a rat temporal lobe (horizontal section) (Courtesy of Dr Jane Flinn. Morvan et al. 2000), and the right shows a similar section (somewhat more ventral) stained for free zinc by TSQ. The pseudo color on the left shows total elemental zinc, and the peak intensity (yellow-white) corresponds to approximately 400 ppm (dry weight), with the red (CA3 mossy fibers) corresponding to about 200 ppm. These values for total zinc are in reasonable agreement with prior averages obtained by micro dissection (Frederickson et al. 1983), with the present ($\sim 2 \times$ higher) values presumably more accurate reflections of true peak levels. Background total zinc is about 60 ppm. DG, dentate gyrus; TSQ, toluene-sulfonamide quinoline zinc staining method (Frederickson et al. 1987a).

et al. 1992) (Figure 3). Not all glutamatergic neurons are of this 'zinc-containing' flavor, but all zinc-containing neurons are glutamatergic (Frederickson 1989; Frederickson et al. 2000 for review). In the spinal cord of the lamprey (Birinyi et al. 2001) and the mouse (Danscher, personal communication), zinc is co-localized with glycine and/or GABA, and spinal vesicular zinc may have different roles than cerebral Zn²⁺ (Kovacks & Larson 1997).

The parcellation of cerebral glutamatergic neurons into the zinc-containing and the non-zinc-containing variety is definitely non-random. As a general rule, the large-neuron, long-axon systems of the brain are non-zinc-containing. Specific examples include all of the first-order sensory fibers of the cranial nerves, most of the thalamocortical fibers of those same, ascending sensory pathways, and essentially all of the long-fiber pathways descending, for example, from the cerebral cortex to the brain stem or spinal cord, or descending pathways from the diencephalon or mesencephalon (reviews in Frederickson *et al.* 2000; Franco-Pons *et al.* 2000; Frederickson & Moncrieff 1994).

Another view of the segregation of zinc-containing versus non-zinc-containing glutamatergic neurons is that almost all of the zinc-containing neuronal somata that have been identified in the brain have been found in either cortical (including allo and isocortex) or amygdalar brain regions. But for a few exceptions (granule neurons in the dorsal cochlear nucleus (Rubio & Juiz 1998), scattered medial thalamic neurons (Long & Frederickson 1994)) the overwhelming preponderance of the zinc-containing neurons of origin

are cerebrocortical or amygdalar (Casanovas-Aguila *et al.* 1998; Christensen & Frederickson 1998).

There are some thought provoking changes in the zinc-containing innervation during early brain development. For example, in the hippocampal formation of the newborn rat pup, transient columnar 'patches' of zinc-containing innervation are conspicuous in the CA1-CA3 fields. These patches disappear quickly thereafter, as the entire blank spaces in the neuropil fill in with a quite uniform staining (Frederickson et al. 1991). Another example occurs in the striatum, where patches that are destined to become neurochemically distinct from the surrounding 'matrix' of the striatum are first identifiable in the zinc staining, which distinctly labels the patches even on post natal day 1, before the other neurochemical and anatomical markers of the patches have arrived (Vincent & Semba 1989). A third example is found in the lateral geniculate nucleus of the albino rat, where there are transient patches of zinc-containing axonal boutons that correspond to the ingrowing uncrossed retino-geniculate pathway (Figure 4). This last case is even more impressive than the first two because the zinc-containing boutons lose their zinc later in development, leaving the adult LGN without any zinc-containing boutons at

In considering these cases one is tempted to speculate that the zinc-containing boutons serve some early pioneer or induction function, laying down a skeletal substrate for later development. Experiential effects on these developmental processes have been identified (Land & Akhtar 1999; see also Dyck & Cynander

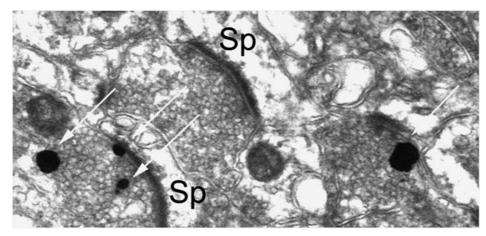


Fig.~2. Timm-Danscher method for tissue metal (which precipitates Zn^{2+} as ZnS, then coats the ZnS with silver) shows silver grains (arrows) amidst the vesicles of Type I presynaptic boutons, contacting spines (Sp). Image from the CA1 field of the rat hippocampus.

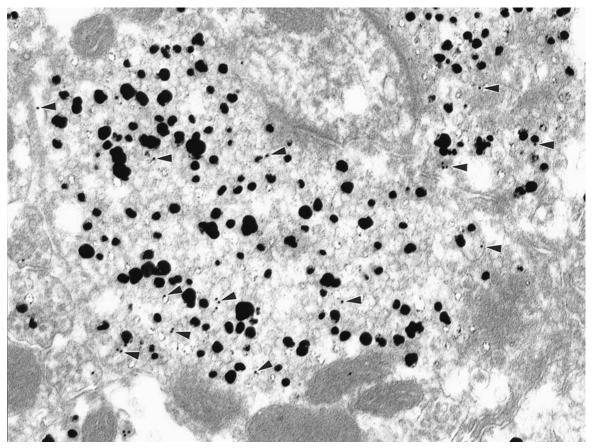


Fig. 3. Timm-Danscher silver staining for zinc shows silver grains amidst vesicles of a mossy-bouton in the rat hippocampus. Colloidal gold dots (in circles) indicate glutamate immunostaining, which co-localizes one-for-one with Timm's in the mouse hippocampus (Courtesy R. Palmiter) \sim 40,000 X.

1993). On the other hand, knockout mice congenitally lacking zinc in their vesicles develop with at least superficially normal brain organization and behavior (Cole *et al.* 2000), so whatever the developmental function of vesicular zinc might be, it would appear that developmental plasticity can compensate.

There are three kinds of Zn²⁺ signals

At the time of this writing, we can identify three distinct classes of zinc signals which we will call: Zn^{2+} -SYN, Zn^{2+} -TRANS, and Zn^{2+} -INT.

$$Zn^{2+}$$
-SYN

The first of these signals, 'synaptic Zn²⁺' (Zn²⁺ -SYN) is a conventional, transmitter-like, synaptic signal, between presynaptic bouton and postsynaptic spine of dendrite. The zinc ions for this signal are stored in presynaptic vesicles at concentrations probably reaching low millimolar levels (see calculations in Frederickson 1989; Frederickson et al. 2000). Upon the arrival of an action potential at the bouton, the calcium- and impulse-frequency dependent exocytosis of these zinc-filled vesicles produces a rapid 'puff' of essentially free, ionic Zn²⁺ in the extracellular fluid surrounding the boutons. These Zn²⁺ transients, or 'puffs' have rise-times of a few milliseconds, and can reach apparent concentrations of 10–30 μ M Zn²⁺ in the extracellular fluid (Li *et al.* 2000, 2001; Thompson et al. 2001; Vogt et al. 2000). Zn²⁺ 'puffs' or 'flashes' comparable to those seen during synaptic release can also be seen during exocytosis of a similar zinc-rich secretory granule, the insulincontaining beta pancreatic cell (Qian et al. 2000), and could presumably be seen during exocytosis of Mast cell granules, salivary cell granules, and that of the dozen-odd other cell types that have zinc-filled secretory granules (Frederickson 1989; Frederickson et al. 1987b).

The Zn²⁺-SYN signal reaches multiple zinc-modulated extracellular zinc-recognition sites on membrane-spanning receptors, pumps, and channels of postsynaptic neurons. The most thoroughly studied of these are the zinc-modulated amino acid receptors, with both the glutamate receptor families and the GABA receptors having diverse and potent responses to the Zn²⁺ ion signal (Smart *et al.* 1994). One of the intriguing examples of the complex and facile nature of these interactions is found at the mossy-fiber

to CA3 pyramidal neuron, where GABA, zinc and glutamate are all released, with the possibility arising of differential zinc modulation of both receptors by zinc at the single synapse (Walker *et al.* 2001). The time-varying expression of receptor-ionophore splice variants which have different zinc sensitivity give the nervous system another degree of freedom with respect to the impact of zinc modulation (Chen *et al.* 1997). Ectopic sprouting of zinc-releasing fibers is another potential mechanism of zinc-mediated plasticity (Coulter 2000).

Despite the complex and protean effects of zinc upon amino acid synapses, it appears that the predominant effect of the Zn²⁺-SYN signal in the brain is a tonic defacilitation at glutamate-gated excitatory ion channel(s). Thus, blocking Zn²⁺-SYN by chelation tends to be proconvulsive (Mitchell & Barnes 1993), and adding modest concentrations of zinc, anticonvulsive (Morton et al. 1990). In ZnT-3 knockout mice (lacking stainable zinc in their vesicles) one of the surprisingly few (Cole et al. 2001) defects observed is that the mice have increased susceptibility to kainic-acid induced seizures (Cole et al. 2000). The overall electrophysiological impact of the Zn²⁺-SYN signal on the hippocampal mossy-CA3 glutamatergic synapse was recently described in elegant detail and summarized with the statement that "... the metal ion Zn^{2+} is a neurotransmitter and ... the activity-dependent synaptic release of Zn2+ modulates NMDA receptor function. This modulation involves an inhibition mediated by both the high-affinity, voltage-independent binding site and the low-affinity, voltage-dependent binding site of Zn²⁺" (Vogt et al. 2000).

Zn^{2+} -TRANS

The second Zn²⁺ signal that has been observed and characterized in the brain occurs roughly simultaneous with the conventional Zn²⁺-SYN signal. This signal is analogous to the transmembrane Ca²⁺ signals, and consists of a transmembrane flux of Zn²⁺ from the extracellular milieu, through gated, zinc-permeable channels, and into the somata (Li *et al.* 2001a, b) or dendrites (Suh *et al.* 2001) of postsynaptic neurons (Figure 5). The highest conductance Zn²⁺ channel is the Ca-AK channel (Figure 6), though NMDA-gated Ca²⁺ channels will also pass zinc (Weiss & Sensi 2000; Weiss *et al.* 2000). Because the presynaptic release of Zn²⁺ is the only known source of appreciable amounts of extracellular Zn²⁺, this signal

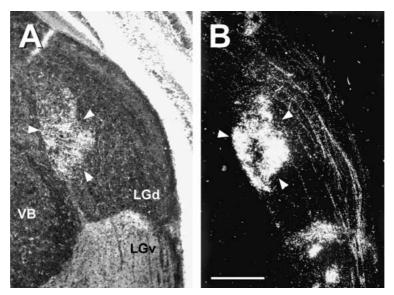


Fig. 4. Zinc staining is present briefly in uncrossed, but not crossed axons innervating the lateral geniculate nucleus of the albino rat. Compare the zinc-staining (A) with the location of the uncrossed axon terminals (B) A. Darkfield photomicrograph showing distribution of histochemically reactive zinc in a coronal section through the lateral geniculate nucleus of a postnatal day 15 rat. Synaptic zinc (stained by the Timm-Danscher method, white arrowheads) is localized to a discrete zone in the medial portion of the nucleus. B. Section adjacent to that illustrated in A showing distribution of incrossed axon terminals (white arrowheads) that were stained by injection of horseradish peroxidase into the ipsilateral eye. Note that synaptic zinc and uncrossed retinal projections are localized to an identical region of the LGd. This developmental zinc staining disappears in the adult. Calibration bar = 300 mm for A and B. Abbreviations: LGN – lateral geniculate nucleus; LGd – lateral geniculate ventral; VB – ventrobasal thalamic nucleus. Courtesy Peter Land.

Zn²⁺-TRANS is both a transynaptic and a transcellular signal. The temporal and spatial characteristics of these Zn²⁺-TRANS 'flashes', or 'sparks' in neuronal cytosol have not been established, but the rise times can be within a few 10's of milliseconds of the initial stimulation of the zinc-containing presynaptic fiber system (Figure 5) (Li *et al.* 2001a; Suh *et al.* 2001). Whether Zn²⁺-TRANS signals can, in turn, induce subsequent intracellular zinc mobilization Zn²⁺-INT in the same way that transmembrane Ca²⁺ fluxes induce mobilization of Ca²⁺ from the SER (or SR) (Melamed-Brook *et al.* 1999; Keizer & Levine 1996) is not presently known.

Zn²⁺-TRANS signals can be blocked either in the cleft, by bath application of a sufficiently fast and high-affinity chelator, or at the postsynaptic neuron, by the use of channel blockers (e.g., CNQX) that prevent the opening of the dominant postsynaptic Zn²⁺ channel, Ca-AK). Conversely, the Zn²⁺-TRANS signal can be mimicked by bath application of Zn²⁺ and a suitable zinc ionophore (e.g., pyrithione). John Sarvey and his colleagues have recently shown by both the blockade and the mimicry approaches that the Zn²⁺-TRANS signal is necessary and (in the presence of

glutamate) sufficient to induce LTP of mossy fiber input in CA3 pyramidal neurons (Li *et al.* 2001b).

$$Zn^{2+}$$
-INT

The third Zn²⁺ signal now under scrutiny is analogous to another class of Ca²⁺ signal, namely, the intracellular Ca²⁺ signal. In the case of calcium, the sarcoplasmic or smooth endoplasmic reticulum are established storage sites for intracellular release of the ion, and the pumps and channels and ligands that mediate the Ca²⁺ movement into and out of those depots are well characterized (Keizer & Levine 1996). With Zn²⁺, on the other hand, there is (as yet) no candidate organelle for the storage of pools for intracellular release. The neuronal vesicle has no detectable Zn²⁺ until it moves out of the Golgi apparatus and into the orthograde axoplasmic flow down axons (Frederickson & Danscher 1990), and no other zinc-filled organelle is found in healthy neurons (Frederickson et al. 1992; Danscher 1996; Fredrickson & Danscher

No matter from where the intracellular Zn^{2+} signals originate, they are prominent and robust in many types of cells, including neurons. Nitric oxide is one of the more potent inducers of Zn^{2+} -INT signals. In the

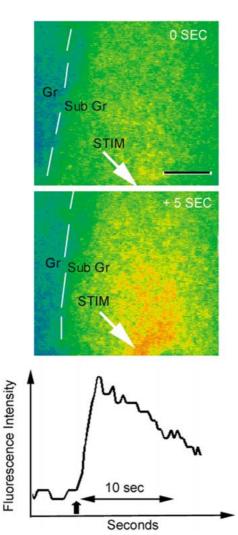


Fig. 5. Intracellular zinc 'puff' is shown in pseudo color, using the membrane-permeable ('trappable') intracellular zinc indicator, Newport green. The electrode tip (STIM) was within the hilus of the dentate gyrus with approximate location of the Granule-Sub-Granule border indicated. Note the 'puff' of zinc at +5 sec after a 5 sec, 100 Hz stimulation. Note rapid rise time of this $\rm Zn^{2+}$ -TRANS fluorescent signal in the quantitative figure at bottom. Quantitative figure reflects changes within pixels located at the center of the 'puff'. Courtesy Yang Li, Chris Hough and John Sarvey. See: Li *et al.* (2001a).

otherwise intact brain, NO* stimulation causes immediate appearance of perikaryal and nuclear zinc staining (Figure 7) (Cuajungco & Lees 1998; Frederickson *et al.* 2001a). In excitotoxicity accompanying seizures, ischemia, hemorrhage, or blunt trauma, similar Zn²⁺ staining occurs within 10's of minutes of the insult (Figure 7) (Frederickson *et al.* 1988, 1989; Prough *et al.* 2001; Suh & Frederickson 2001). Because these Zn²⁺-INT signals are seen (i) in neurons far from any

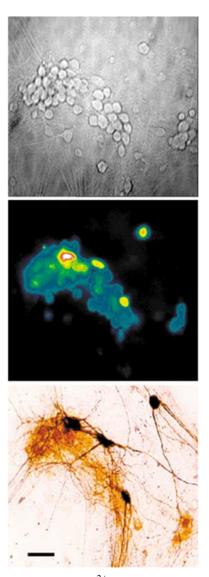


Fig. 6. Neurons that fill with Zn²⁺ during a glutamate + zinc challenge, are the same neurons that express abundant Ca-AK channels. Cultured neurons (top) respond differentially to combined stimulation with zinc and glutamate, with four somata attaining high levels of intracellular zinc (yellow-red-white in the pseudo color, middle panel), and the rest showing only marginal intracellular zinc. Double staining by the cobalt method which labels via the Ca-AK channels (bottom panel) reveals that the 4 zinc-filled neurons each had robust expression of the high-zinc-permeability Ca-AK channels (Courtesy John Weiss & Stefano Sensi; see Weiss & Sensi 2000).

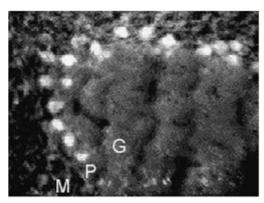


Fig. 7. The cerebellar cortex is normally completely negative for zinc staining throughout the Molecular (M), Purkinje (P) and Granule (G) strata. However, infusion of a NO* donor (spermine NO) in vivo causes Purkinje somata to rapidly develop intense TSQ fluorescence for zinc (white spheres).

synaptic zinc source (Figure 6; Frederickson et al. 2001a), and are seen (ii) in neurons of mutant mice lacking detectable synaptic zinc (Lee et al. 2000), and are seen (iii) in a variety of dissociated cell types in culture (Zangger et al. 2001 and references therein), there is little doubt that the intracellular zinc can arise from some still-undiscovered zinc depot within cells. One likely candidate for the source of the Zn²⁺-INT signals would be zinc-sequestering proteins such as metallothionein, which can release up to 7 zinc ions per molecule upon command. The NO* stimulus has been shown to release zinc from proteinaceous storage sites (including MT) by nitrosylation of ligands (Zangger et al. 2001). Other redox and oxidative stimuli can cause a similar Zn²⁺-INT zinc release (Maret 2000; Ye et al. 2001).

The targets and physiological functions of the Zn^{2+} -INT signals are still largely undiscovered. Because the Zn^{2+} -INT signals appear in conditions of biological stress, one focus of research has been on Zn^{2+} -INT control of mitochondrial function and of apoptotic events (Truong-Tran *et al.* 2001; Yoon *et al.* 2000; Hyun *et al.* 2000). One powerful new technology that will doubtless accelerate progress is the development of antibodies for the zinc-binding sites that will distinguish the zinc-site-occupied (zincylated?) from the zinc-site-unoccupied (dezincylated?) condition (Herwald *et al.* 2001). One physiological response to a Zn^{2+} -INT signal has been tentatively identified by this antibody strategy (Herwald *et al.* 2001).

Zinc versus calcium

Conventional wisdom holds that zinc and calcium have fundamentally different roles in the brain. Zinc is viewed as an enduring component of proteins and an ion that is sometimes temporarily 'free' (i.e., between proteins) whereas calcium is typically viewed as a 'free' extracellular ion, that is generally bound in the intracellular milieu, (i.e., between signaling duties) in calcium-sequestering proteins that serve to 'send' calcium signals. Thus, the term 'zinc-binding protein' generally refers to any of hundreds of metalloproteins that have zinc tightly bound into more-or-less permanent sites (e.g., zinc-finger motifs; Berg 1990) at critical folding points or active catalytic sites (Vallee & Falchuk 1993). Calcium-binding protein, in contrast generally refers to any of dozens of proteins known to scavenge, store, and release the ion, in the course of calcium signaling events (e.g., Williams 1996; Toutenhoofd & Strehler 2000).

It is now clear that the conventional wisdom about zinc is wrong, at least as concerns the brain. As described above, zinc ions are stored, released, taken up, and translocated across membranes and within cells, and there are myriad proteinaceous targets and receptors specifically tuned to these zinc signals. Furthermore, it is now appreciated that there are zinc-binding proteins that are kinetically-labile, having relatively rapid on- and off-rates (Maret 2000; Auld 1995).

If both zinc and calcium serve as signal ions, then one may ask why there are two such signals and how their differences (and similarities) could be utilized by cells. As Table 1 shows, one salient difference is the fact that extracellular free zinc (unlike extracellular calcium) is essentially absent in the extracellular fluid, with the estimated concentration being below the detection limits for most analytical methods (~ 1 pM; see Simons 1991; Powell et al. 1999; discussion in Frederickson 1989). Therefore, whereas transmembrane calcium signals can be initiated by merely opening a calcium channel, transmembrane zinc signals require the release of some ion into the extracellular space and opening of transmembrane channels. So far, zinc-containing presynaptic vesicles, with mM levels of zinc ions, are the only known source of such extracellular zinc in brain tissue. This means that transmembrane zinc signals are always 'AND' signals, with synaptic release AND membrane channel opening both required.

The other notable difference is that there are already dozens of calcium scavenging, sequestering,

Table 1. Comparison of zinc and calcium signal properties.

Attribute	Zinc (Zn ²⁺)	Calcium (Ca ²⁺)
Approximate ion concentration in deep ocean	1 pM - 1 nM	10 mM
Approximate concentration of free ion extracellularly	not established, but likely 1 pM to 1 nM	22 mM
Approximate concentration of free ion in cytosol	not established, but \sim 005–10 nM	∼50 nM
Approximate concentration of ion in storage (releasable) pools	~3–30 mM in presynaptic vesicles	? low μ M in SER ?
Magnitude of transient physiological ion signals	~1000-fold increases in cytosol	\sim 1000-fold increases in cytosol
Rise-time of transient physiological signals	1–10 msec	1–10 msec
Specific membrane-bound storage organelles ?	YES: presynaptic vesicles many other secretory granules	YES: SER (& synaptic vesicles) in neurons; SR in muscle
Specific releasable pools?	YES: presynaptic vesicles; MT	YES: SER, SR
Membrane-spanning gated channels for the ion ?	YES: voltage and ligand gated	YES: voltage and ligand gated
Ion- sequestering proteins ?	YES (few described, eg, metallothionein)	YES (dozens described, eg, calbindin, calmodulin)
Ion-sensitive ion channels ?	YES: (NMDA, AMPA KA, K ⁺ ; GABAa,b all modulated by extracellular Zn ²⁺)	YES, Na ⁺ , K ⁺ , CA ⁺⁺ all modulated by intracellular Ca ⁺⁺
Ion modulated enzymes	YES	YES
Cytotoxic at high intracellular levels	YES 100's nM fatal	YES 100's nM fatal
Number of ion-containing proteins	hundreds of zinc finger and other zinc-containing proteins	many calcium storage and calcium-modulated proteins
References	Li et al. 2001a,b; Thomson et al. 2000, 2001; Canzoniero et al. 1999; Simons 1991; Smart et al. 1994; Frederickson et al. 2000; Lobner et al. 2000; Powell et al. 1999; Frederickson 1989; Choi & Koh 1998	Melamed-Brook et al. 1999; ZhuGe et al. 2000; Keizer & Levine 1996; Brown & MacLeod 2000; Van Assche et al. 1996; Wilson 1996

and releasing proteins identified, as well as calcium-modulated signal cascades, whereas only metallothionein (Maret 2000) and the Zn-T zinc pumps (ZnT1, 2, 3) have been established as 'helper proteins' for storing and releasing zinc signals (Pamiter *et al.* 1996). This may be mostly due to a lack of interest in the past: the search for proteins that control the zinc signal pathways is doubtless now beginning.

Pathophysiology

Zinc dysregulation is implicated as a contributing factor in two types of neuropathology: (i) Alzheimer's disease, and (ii) the so-called 'excitotoxicity' which injures neurons after ischemia, hemorrhage, seizures, or mechanical brain traumas.

In broad outline, the evidence implicating zinc is roughly the same in both cases. Thus, in the first place, both conditions are marked by the appearance of vivid,

anomalous, and emblematic staining for zinc in the histochemical centers of the disease processes in the brain (Frederickson et al. 1989; Suh et al. 2000a, b). In the second place, both conditions can be ameliorated by the simple strategy of treating the brain with a zinc chelator to lower the extracellular Zn²⁺ burden (Koh et al. 1996; Frederickson et al. 2001; Suh et al. 2000; Cherny et al. 2001). Third, both conditions can be simulated in certain in vitro test models by the addition of excess exogenous zinc to the brain tissue under study (Bush et al. 1994a, b; Weiss & Sensi 2000). Fourth, both conditions are plausibly triggered (or accelerated) by the pathological release of an excess of Zn²⁺ into the extracellular milieu from the only known store of such Zn²⁺, the zinc-containing boutons. Fifth, both conditions tend to strike preferentially in those cerebrocortical regions (hippocampal formation, amygdala, frontal cortex) where the concentration of zinc-containing axonal boutons is highest (reviews in Suh et al. 2000a, b; Frederickson et al. 1989, 1992, 2000).

Alzheimer's Disease (AD)

One of us (AIB) has developed a model where abnormalities of the zinc homeostatic control mechanisms may explain the pathological features found in AD. The model is based on the tendency of amyloid beta (A β a primary constituent of AD plaques and AD angiopathy) to precipitate in the presence of sufficient zinc to occupy its low affinity (micromolar) binding site (Figure 8).

Amyloid beta peptide binds zinc at both highand low-affinity binding sites (Bush et al. 1994b). Zinc concentrations above 300 nM rapidly precipitate synthetic human A β 1-40 (Bush et al. 1994a, b). Interestingly, zinc preserves the α -helical conformation of A β 1-40 and its complexation is completely reversed with chelation treatment (Huang et al. 1997). This result suggests that zinc-induced A β aggregation may possibly inhibit its intrinsic neurotoxicity. Meanwhile, rat A β 1-40 (with substitutions of Arg \rightarrow Gly, Tyr→Phe and His→Arg at positions 5, 10 and 13, respectively) binds zinc less avidly ($K_A = 3.8 \mu M$) and is unaffected by zinc at these concentrations, perhaps that is why rats do not form Alzheimer's like plaques (Shivers et al. 1988). In the absence of zinc, the solubilities of the rat and the human $A\beta$ species are indistinguishable (Bush et al. 1994a).

Zinc-induced A β precipitation at pH 7.4 is highly specific for zinc, however, copper Cu²⁺ and iron

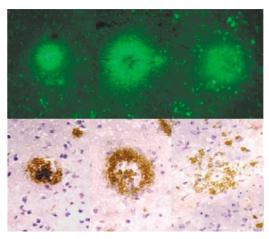


Fig. 8. Autopsy material from patients deceased of Alzheimer's disease show TSQ staining (upper panels) of amyloid plaques; shown, for comparison, stained with AB1-42 immunostaining (lower panels). The six plaques are all from different sections, and have been combined digitally for illustration. Courtesy of Math Cuajungco, Sang Won Suh, Al Rampy, and Zoran Gatalica.

Fe²⁺ can also bind, especially at lower (6.6) pH (Atwood et al. 1998). While Cu²⁺ and Fe³⁺ binding to $A\beta$ induces O_2 dependent H_2O_2 production and toxicity (Huang et al. 1999a, b), co-incubation with Zn^{2+} (>4:1, Zn:Cu) inhibits H_2O_2 production (Cuajungco et al. 2000). Zn²⁺ had previously been reported to protect cell cultures from A β toxicity (Lovell et al. 1999). Extending this observation, we found that Zn²⁺ rescued primary cortical and human embryonic kidney 293 cells that were exposed to $A\beta$ 1-42 (Cuajungco et al. 2000). Since plaques contain exceptionally high concentrations of Zn^{2+} (≈ 1 mM, see below), we examined the relationship between oxidation (8-OH guanosine) levels in AD-affected tissue and histological amyloid burden, and found a highly significant negative correlation. Therefore, Zn²⁺ loading into plaques may represent an attempt at protective homeostatic response in AD, where plaques form as the result of a more robust Zn²⁺ antioxidant response to the underlying oxidative attack, and that the $A\beta$ in the plaques has been redox-silenced by the high concentrations of Zn²⁺, whereas the diffuse and soluble $A\beta$ accumulations within the brain would be a source of H₂O₂ and oxidative damage (McLean et al. 1999).

Recently, we have shown that $A\beta$ binds Cu^{2+} and Zn^{2+} through selective binding sites. When synthetic $A\beta$ is co-incubated with excess but equal amounts of Cu^{2+} and Zn^{2+} , ≈ 1.5 equivalents of each metal ion bind to each mole of peptide. Since the affinity of the low and high affinity Cu^{2+} binding sites on $A\beta$ ranges

Table 2. Zinc-binding and zinc-dependent proteins implicated in AD pathology.

Proteins	Zinc effects	Role in Alzheimer's	References
α_2 -Macroglobulin	zinc-binding protein	zinc binding triggers $Zn+A\beta+\alpha_2$ -M complex formation	Du et al. 1997; Hughes et al. 1998
Nerve Growth Factor- β	removal of zinc 'zipper' releases active fragment from zymogen	neurotrophic agent - combats AD advance	Pattison & Dunn 1976a, b; Ross <i>et al.</i> 1997
S100β	zinc-containing protein, neurite extension factor	elevated amidst plaques and NFT in AD brains	Griffin et al. 1989; Marshak et al. 1991
Metallothionein	zinc-sequestering protein	altered in AD brains	Zambenedetti <i>et al.</i> 1998; Adlard <i>et al.</i> 1999
Alpha- and beta- secretases	cleave proteins at zinc- binding site	cleave APP releasing $A\beta$	Bush et al. 1994
Matrix metalloproteinases	zinc-containing enzymes	can degrade A β 1-41 and A β 1-42	Backstrom <i>et al.</i> 1996; Roher <i>et al.</i> 1994
Caspase	zinc-modulated enzyme: up- or down-regulated, depending on concentration	modulates apoptosis may modulate AD apoptotic cell death	Cuajungco & Lees 1997; Choi & Koh 1998

from nM- attoM, and since the highest affinity Zn^{2+} site on $A\beta$ is 100 nM, the finding that Cu^{2+} does not compete for all of the available metal binding sites when co-incubated with Zn^{2+} implies that $A\beta$ possesses separate and selective Cu^{2+} and Zn^{2+} binding sites (Atwood *et al.* 2000). Importantly, mildly acidic conditions, representing physiological acidosis (e.g., pH 6.8), abolish Zn^{2+} binding to $A\beta$, but enhance Cu^{2+} binding to $A\beta$, so that when Cu^{2+} and Zn^{2+} are co-incubated with $A\beta$ at pH 6.8, \approx 3.0 equivalents of Cu^{2+} bind to the peptide, but virtually no Zn^{2+} (Atwood *et al.* 1998; Atwood *et al.* 2000). Physiological acidosis may therefore be one mechanism by which $A\beta$ loses the redox-protective Zn^{2+} binding, and may then be liable for inappropriate redox activity.

In keeping with our prediction that $A\beta$ is a zinc metalloprotein, we have now published observations that amyloid plaques in post-mortem AD have a marked enrichment of zinc (to mM levels (Lovell *et al.* 1998)) that is histochemically visible (Figure 8; Suh *et al.* 2000b). Intriguingly, Zn^{2+} is also markedly enriched in the neocortical amyloid plaques of APP transgenic mice (Lee *et al.* 1999), supporting the likelihood that abnormal Zn- $A\beta$ interaction is responsible for plaque formation *in vivo*. The significance of Zn

(and Cu) being present in the amyloid mass in the brain in AD is that it may be possible to create therapeutic drugs for AD that safely target the A β -Zn interaction. Zn/Cu-selective chelators reverse Zn/Cuinduced aggregation of synthetic A β in vitro (Huang et al. 1997; Atwood et al. 1998), inhibit A β -mediated H₂O₂ formation (Huang et al. 1999a, b; Bush et al. 1999), and solubilize $A\beta$ from amyloid deposits in post-mortem AD-affected brain tissue (Cherny et al. 1999). Recently, we reported the profound inhibition of $A\beta$ deposition in the pellet phase of brain homogenates (375 μ g/g wet weight, P = 0.0001) in a blinded study of APP2576 transgenic mice treated orally for 9 weeks with clioquinol, an antibiotic and bioavailable Cu/Zn chelator. This was accompanied by a modest increase in soluble A β (1.45% of total cerebral $A\beta$); but APP, synaptophysin and GFAP levels were unaffected. Behavioral and body weight parameters were significantly more stable in the treated animals, and there was no evidence of systemic metal depletion (Cherny et al. 2001). The affinity of clioquinol for Zn is only nanomolar, so therefore while the molecule therapeutically targets the metals that induce $A\beta$ aggregation or redox activity, unlike common chelators (e.g., EDTA, desferrioxamine) clioquinol does not appear to have sufficient affinity for Zn and Cu to disturb metal-dependent biochemistry.

Beyond the immediate interactions of zinc and amyloid, there are a number of less direct pathways by which zinc dysregulation can affect the rate and severity of the AD pathophysiology. Table 2 lists some examples of zinc-containing and zinc-sensitive protein signals and enzymes that can modify the course of the AD pathology, and would be themselves perturbed in the face of any primary disturbance of zinc homeostasis in the brain.

Excitotoxicity

In conditions of compromised cerebral blood flow and in sustained status epilepticus, the so-called 'excitotoxic' cell injury cascade is triggered in the brain. The release of copious glutamate and consequent depolarization of neurons that constitute excitotoxicity is accompanied by the appearance of very high levels of free Zn²⁺ in the somata of (and only of) the dying neurons (Frederickson et al. 1988, 1989; Tonder et al. 1990; Suh et al. 2000a; Suh & Frederickson 2001; Prough et al. 2001) (Figure 9). Because this anomalous, pathological intracellular Zn²⁺ burden can be found in neurons not surrounded by appreciable zinc-containing innervation (Frederickson et al. 2001a), and can be found in neurons of knockout mice congenitally-lacking detectable Zn²⁺ in their presynaptic vesicles (Lee et al. 2000), it seems certain that there is a Zn²⁺-INT signal contributing to the excitotoxic zinc signal. As mentioned earlier, nitric oxide and superoxide stimuli mobilizing zinc off proteins such as metallothionein probably contribute part of this Zn²⁺-INT signal.

At the same time, in the brains of otherwise normal animals, the massive release of glutamate during excitotoxicity is accompanied by an equally massive release of Zn²⁺ from the presynaptic boutons (Frederickson *et al.* 1988, 2001b; Suh *et al.* 2000; Sorensen *et al.* 1998). Therefore it is hard to imagine that there is not a Zn²⁺-TRANS signal that also contributes to the zinc-loading of neurons during excitotoxic crises.

Regardless of the relative contributions of Zn²⁺-INT and Zn²⁺-TRANS, the Zn²⁺ apparently kills cells by entering mitochondria and disrupting function, with both a release of reactive oxidative species and induction of both apoptosis and necrosis (depending on paradigms) and the death of the cell (Weiss *et al.* 2000; Weiss & Sensi 2000; Choi & Koh 1998).

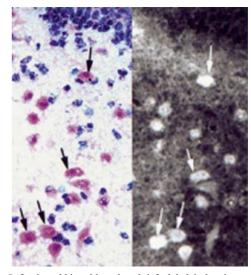


Fig. 9. In the rabbit subjected to brief global ischemia, neurons throughout the cerebrum (arrows) show TSQ staining for zinc (right panel) and (in the corresponding neurons) acidophilic changes indicative of injury/degeneration (left panel). Double-staining of the same section; 1 h post ischemia. Courtesy of Mark Zornow, Don Prough, and Sang Won Suh.

As discovered by Choi and his colleagues, therapeutic administration of an extracellular zinc-specific chelator can reduce excitotoxic cell loss by up to 80% (Koh et al. 1994). This has been shown in experimental animals with excitotoxicity induced by ischemia (Koh et al. 1994), trauma (Suh et al. 2000a), or trauma plus hemorrhage (Prough & Frederickson, unpublished) and (with some mixed results) in some seizure models (Lees et al. 1998). In all cases, the neuron sparing is judged by the reduced numbers of neurons showing acidophilic signs of injury up to 24 h after the initial insult. Interestingly, this rescue of neurons by a chelator can be done even if the zinc insult (from exogenous zinc) is applied first then terminated, and the therapeutic zinc chelation (by CaEDTA) is applied some time later. In this latter case, the zinc-staining of cells induced by a prior insult is reversed by the subsequent addition of CaEDTA to the medium (Frederickson et al. 2001b). In addition to conventional chelators, such as CaEDTA, the highlyspecific zinc-stripped (apo) form of a zinc-containing protein (carbonic anhydrase) is also neuroprotective when administered intraventricularly in a trauma + hemorrhage rat model (Prough & Frederickson, unpublished). Because the on- and off-rates of carbonic anhydrase can be separately modified by genetic engineering (Thompson et al. 2000, 2001), this latter

approach may prove useful for design and fabrication of intracerebral zinc buffers.

Acknowledgements

We thank Richard Thompson, John Sarvey and Chris Hough for discussion. Supported in part by NS42015, NS 46668, and NS 38585.

References

- Adlard PA, West AK, Vickers JC. 1998 Increased density of metallothionein I/II immunopositive cortical glial cells in the early stages of Alzheimer's disease. *Neurobiol Dis* 5, 349–356.
- Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, Hartshorn MA, Tanzi RE, Bush AI. 1998 Dramatic aggregation of Alzheimer Aß by Cu(II) is induced by conditions representing physiological acidosis. *J Biol Chem* 273, 12817–12826.
- Auld DS. 1995 Removal and replacement of metal ions in metal-lopeptidases. Methods Enzymol 248, 228–242.
- Backstrom JR, Miller CA, Tokes ZA. 1992 Characterization of neutral proteinases from Alzheimer-affected and control brain specimens, identification of calcium-dependent metalloproteinases from the hippocampus. *J Neurochem* 58, 983–992.
- Baranano DE, Ferris CD, Snyder SH. 2001 Atypical neural messengers. Trends Neurosci 24, 99–106.
- Beaulieu C, Dyck R, Cynader M. 1992 Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. *Neuroreport* 10, 861–864
- Berg JM. 1990 Zinc finger domains: hypotheses and current knowledge. *Annu Rev Biophys Biophys Chem* **19**, 405–421.
- Birinyi A, Parker D, Antal M, Shupliakov O. 2001 Zinc co-localizes with GABA and glycine in synapses in the lamprey spinal cord. *J Comp Neurol* 433, 208–221.
- Brown EM, MacLeod RJ. 2001 Extracellular calcium sensing and extracellular calcium signaling. *Physiol Rev* **81**, 239–297.
- Bush AI, Pettingel WH, Multhaup G, Paradis MD, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE. 1994a Rapid induction of Alzheimer A amyloid formation by zinc. *Science* 265, 1464–1467.
- Bush AI, Pettingel WH, Paradis MD, Tanzi RE. 1994b. Modulation of Aß adhesiveness and a secretase site cleavage by zinc. *J Biol Chem* **269**, 12152–12158.
- Bush AI, Huang X, Fairlie DP. 1999 The possible origin of free radicals from amyloid β peptides in Alzheimer's disease. *Neurobiol Aging* **20**, 335–337.
- Canzoniero LMT, Turetsky DM, Choi DW. 1999 Measurement of Intracellular Free Zinc Concentrations Accompanying Zinc-Induced Neuronal Death. J Neurosci 19(RC31), 1–6.
- Casanovas-Aguilar C, Reblet C, Perez-Clausell J, Bueno-Lopez JL. 1998 Zinc-rich afferents to the rat neocortex, projections to the visual cortex traced with intracerebral selenite injections. *J Chem Neuroanat* 15, 97–109.
- Chen N, Moshaver A, Raymond LA. 1997 Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. *Mol Pharmacol* 51, 1015–1023.
- Cherny RA, Atwood CS, Xilinas X, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y-S, Huang X,

- Goldstein LE, Moir RD, Lim JT, Zheng H, Beyreuther K, Tanzi RE, Masters CL, Bush AI. 2001 Treatment with a copper-zinc chelator markedly and rapidly inhibits β -amyloid accumulation in Alzheimer's disease transgenic mice. *Neuron* **30**, 665–676.
- Choi DW, Koh JY. 1998 Zinc and brain injury. Annu Rev Neurosci 21, 347–375.
- Christensen MK, Frederickson CJ. 1998 Zinc containing afferent projections to the rat corticomedial amygdaloid complex, a retrograde tracing study. J Comp Neurol 400, 375–390.
- Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. 1999 Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. *Proc Natl Acad Sci USA* 96, 1716–1721.
- Cole TB, Martyanova A, Palmiter RD. 2001 Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse. *Brain Res* 891, 253–265.
- Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD. 2000 Seizures and neuronal damage in mice lacking vesicular zinc. *Epilepsy Res* 39, 153–169.
- Coulter DA. 2000 Mossy fiber zinc and temporal lobe epilepsy, pathological association with altered 'epileptic' gammaaminobutyric acid A receptors in dentate granule cells. *Epilepsia* 41(Suppl 6), S96–S99.
- Cuajungco MP, Lees GJ. 1998 Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. *Brain Res* **799**, 118–129.
- Cuajungco MP, Lees GJ, Kydd RR, Tanzi RE, Bush AI. 2000 Zinc and Alzheimer's disease, an update. *Nutl Neurosci* 2, 191–208.
- Danscher G. 1996 The autometallographic zinc-sulfide method. A new approach *in vivo* creation of nanometer sized zinc sulfide crystal lattices in zinc-enriched synaptic and secretory vesicles. *J Histochem* **28**, 363–372.
- Du Y, Ni BF, Glinn M, Dodel RC, Bales KR, Zhang Z, Hyslop PA, Paul SM. 1997 α 2-macroglobulin as a β -amyloid peptidebinding plasma protein. *J Neurochem* **69**, 299–305.
- Dyck RH, Cynader MS. 1993 An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitter-related molecules in cat and monkey visual cortex. *Proc Natl Acad Sci USA* 90, 9066–9069.
- Franco-Pons N, Casanovas-Aguilar C, Arroyo S, Rumia J, Perez-Clausell J, Danscher G. 2000 Zinc-rich synaptic boutons in human temporal cortex biopsies. *Neuroscience* **98**, 429–435.
- Frederickson CJ. 1989 Neurobiology of zinc and zinc-containing neurons. *Int Rev Neurobiol* **31**, 145–238.
- Frederickson CJ, Cuajungco MP, Suh SW. 2001 Nitric oxide causes apparent release of zinc from presynaptic boutons. *Neuroscience* (in press).
- Frederickson CJ, Danscher G. 1990 Zinc-containing neurons in the hippocampus and related CNS structures. *Prog Brain Res* **83**, 71–84
- Frederickson CJ, Danscher G, Cravens KJ, Slomianka L, Sylvan LB. 1991 Staining for zinc reveals columnar patches in the hippocampus of the newborn rat. Soc Neurosci Abs 17, 1131.
- Frederickson CJ, Hernandez MD, Goik SA, Morton JD, McGinty JF. 1988 Loss of zinc staining from hippocampal mossy fibers during kainic acid-induced seizures, a histofluorescence study. *Brain Res* 446, 383–386.
- Frederickson CJ, Hernandez MD, McGinty JF. 1989 Translocation of zinc may contribute to seizure-induced death of neurons. *Brain Res* 480, 317–321
- Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE. 1987a A quinoline fluorescence method for visualizing and assaying the histochemically-reactive zinc in the brain. *J Neurosci Meth* 20, 91–103.

- Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB. 1983 Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. *Brain Res* 273, 335–339.
- Frederickson CJ, Moncrieff DW. 1994 Zinc-containing neurons. *Biol Signals* **3**, 127–139.
- Frederickson CJ, Perez-Clausell J, Danscher G. 1987b Zinc-Containing 7S-NGF Complex, Evidence from Zinc Histochemistry for Localization in Salivary Secretory Granules. J Histochem Cytochem 35, 579–583.
- Frederickson CJ, Rampy BA, Reamy-Rampy S, Howell GA. 1992 Distribution of histochemically reactive zinc in the forebrain of the rat. J Chem Neuroanat 5, 521–530.
- Frederickson CJ, Suh SW, Cha K, Koh JY, Cuajungco MP. 2001b Depletion of Intracellular Zinc in Neurons by Use of an Extracellular Chelator *in vivo* and *in vitro*. *Neuroreport* (in press).
- Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. 2000 Importance of zinc in the central nervous system, the zinccontaining neuron. J Nutr 130 (Suppl 5), 14715–14835.
- Griffin WST, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White III CL, Araoz C. 1989 Brain interleukin-1 and S-100b immunoreactivity are elevated in Down syndrome and Alzheimer's disease. Proc Natl Acad Sci USA 86, 7611–7615.
- Haug F-MS. 1967 Electron microscopical localization of the zinc in hippocampal, mossy fiber synapses by a modified sulfide silver procedure. *Histochemie* 8, 355–368.
- Herwald H, Morgelin M, Svensson HG, Sjobring U. 2001 Zinc-dependent conformational changes in domain D5 of high molecular mass kininogen modulate contact activation. *Eur J Biochem* 268, 396–404.
- Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa, RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI. 1999a The $A\beta$ peptide of Alzheimer's Disease directly produces hydrogen peroxide through metal ion reduction. *Biochemistry* **38**, 7609–7616.
- Huang X, Atwood CS, Moir RD, Hartshorn MA, Vonsattel JP, Tanzi RE, Bush AI. 1997 Zinc-induced Alzheimer's Abeta1-40 aggregation is mediated by conformational factors. *J Biol Chem* 272, 26464–26470.
- Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall J, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa, RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI. 1999b Cu(II) potentiation of Alzheimer Aβ neurotoxicity, correlation with cell-free hydrogen peroxide production and metal reduction. *J Biol Chem* 274, 37111–37116.
- Hughes SR, Khorkova O, Goyal S, Knaeblein J, Heroux J, Riedel NG, Sahasrabudhe S. 1998 α2-Macroglobulin associates with βamyloid peptide and prevents fibril formation. *Proc Natl Acad* Sci USA 95, 3275–3280.
- Hyun HJ, Sohn J, Ahn YH, Shin HC, Koh JY, Yoon YH. 2000 Depletion of intracellular zinc induces macromolecule synthesisand caspase-dependent apoptosis of cultured retinal cells. *Brain Res* 869, 39–48.
- Keizer J, Levine L. 1996 Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations. *Biophys J* 71, 3477–3487.
- Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. 1996 The role of zinc in selective neuronal death after transient global cerebral ischemia. *Science* 272, 1013–1016.
- Kovacs KJ, Larson AA. 1997 Zn²⁺ inhibition of [3H]MK-801 binding is different in mouse brain and spinal cord, effect of glycine and glutamate. *Eur J Pharmacol* **324**, 117–123.

- Land PW, Akhtar ND. 1999 Experience-dependent alteration of synaptic zinc in rat somatosensory barrel cortex. *Somatosens Mot Res* 16, 139–150.
- Lee JY, Cole TB, Palmiter RD, Koh JY. 2000 Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures, evidence against synaptic vesicle origin. *J Neurosci* 1(20), RC79.
- Lee J-Y, Mook-Jung I, Koh J-Y. 1999 Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. *J Neurosc* 19 (RC10), 1–5.
- Lees GJ, Cuajungco MP, Leong W. 1998 Effect of metal chelating agents on the direct and seizure-related neuronal death induced by zinc and kainic acid. *Brain Res* **799**, 108-117.
- Li Y, Hough C, Suh SW, Sarvey J, Frederickson CJ. 2001a Evidence that Synaptically-released Zn²⁺ is translocated into postsynaptic neuons during synaptic transmission. *J Neurophysiol* (in press).
- Li Y, Hough C, Frederickson CJ, Sarvey JA. 2001b Zinc release and entry into pre- and postsynaptic neurons is required for LTP in the mossy fiber-CA3 synapse. *Soc Neurosci Abs* (in press).
- Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, Tian M, Dugan LL, Kerchner GA, Sheline CT, Korsmeyer SJ, Choi DW. 2000 Zinc-induced neuronal death in cortical neurons. *Cell Mol Biol* 46, 797–806.
- Long YY, Frederickson CJ. 1994 A Zinc-Containing Fiber System of Thalamic Origin. NeuroReport 5, 2026–2028.
- Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. 1998 Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 158, 47–52.
- Maret W. 2000 The function of zinc metallothionein, a link between cellular zinc and redox state. J Nutr 130 (Suppl 5), 1455S–1458S.
- Marshak DR, Pesce SA, Stanley LC, Griffin WST. 1991 Increased S-100b neurotrophic activity in Alzheimer's disease temporal lobe. *Neurobiol Aging* 13, 1–7.
- Maske H. 1955 Uber den topochemischen Nachweis von Zink in Ammonshorn verschiedener Säugetiere. Naturwissenschaften 42, 424.
- McLardy T. 1970 Anatomical rationale of ablative surgery for temporal lobe seizures and dyscontrol, suggested stereo-chemode chelate-blockade alternative. Acta Neurochir 23, 119–124.
- McLean C, Cherny R, Fraser F, Fuller S, Smith M, Beyreuther K, Bush A, Masters C. 1999 Soluble pool of $A\beta$ amyloid as a determinant of severity of neurodegeneration in Alzheimer's. *Disease Ann Neurol* **46**, 860–966.
- Melamed-Book N, Kachalsky SG, Kaiserman I, Rahamimoff R. 1999 Neuronal calcium sparks and intracellular calcium 'noise'. Proc Natl Acad Sci USA 96, 15217–15221.
- Mitchell C, Barnes M. 1993 Proconvulsant action of diethyldithiocarbamate in stimulation of the perforant path. *Neurotox Teratol* 15, 165–171.
- Morton JD, Howell GA, Frederickson CJ. 1990 Effects of subcutaneous injections of zinc chloride on seizures induced by noise and by kainic acid. *Epilepsia* 31, 139–144.
- Morvan J, Hunter D-F, Krause L, Flinn JM, Jones BF. 2000 Synchrotron X-ray fluorescence demonstrates increased zinc in the cortex of rats raised on drinking water containing enhanced levels of zinc. Soc Neurosci Abs.
- Palmiter RD, Cole TB, Quaife CF, Findley SD. 1996 ZnT-3, a putative transporter of zinc into synaptic vesicles. *Proc Natl Acad Sci USA* 93, 14934–14939
- Pattison SE, Dunn MF. 1976a On the mechanism of divalent metal ion chelator induced activation of the 7S nerve growth factor esteropeptidase, activation by 2,2',2"-terpyridine and by 8-hydroxyquinoline-5-sulfonic acid. *Biochemistry* **15**, 3691–3696.

- Pattison SE, Dunn MF. 1976b On the mechanism of divalent metal ion chelator induced activation of the 7S nerve growth factor esteropeptidase, thermodynamics and kinetics of activation. *Biochemistry* **15**, 3696–3703.
- Powell JJ, Burden TJ, Greenfield SM, Taylor PD, Thompson RP. 1999 Urinary excretion of essential metals following intravenous calcium disodium edetate, an estimate of free zinc and zinc status in man. *J Inorg Biochem* **75**, 159–165.
- Prough DS, Suh SW, Frederickson CJ, Li ZY, DeWitt DS. 2001 Traumatic brain injury and hemorrhagic hypotension increase cortical and hippocampal zinc translocation in rats. *Crit Care Med* 28(76, Supplement S).
- Qian WJ, Aspinwall CA, Battiste MA, Kennedy RT. 2000 Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopy. *Anal Chem* 72, 711–717.
- Roher AE, Kasunic TC, Woods AS, Cotter RJ, Ball MJ, Fridman R. 1994 Proteolysis of AB peptide from Alzheimer's disease brain by gelatinase A. *Biochem Biophys Res Commun* 205, 1755–1761
- Ross GM, Shamovsky IL, Lawrence G, Solc M, Dostaler SM, Jimmo SL, Weaver DF, Riopelle RJ. 1997 Zinc alters conformation and inhibits biological activities of nerve growth factor and related neurotrophins. *Nat Med* **8**, 872–878.
- Rubio ME, Juiz JM. 1998 Chemical anatomy of excitatory endings in the dorsal cochlear nucleus of the rat, differential synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc. J Comp Neurol 399, 341–358.
- Shivers BD, Hilbich C, Multhaup G, Salbaum M, Beyreuther K, Seeburg PH. 1988 Alzheimer's disease amyloidogenic glycoprotein, expression pattern in rat brain suggests role in cell contact. EMBO J. 7, 1365–1370.
- Simons TJ. 1991 Intracellular free zinc and zinc buffering in human red blood cells. *J Membr Biol* **123**, 63–71.
- Smart TG, Xie X, Krishek BJ. 1994 Modulation of inhibitory and excitatory amino acids receptor ion channels by zinc. *Prog Neurobiol* 42, 393–441.
- Sorensen J, Mattson B, Andreasen A, Johansson B. 1998 Rapid disappearance of zinc positive terminals in focal brain ischemia. *Brain Res* 812, 265–269.
- Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G, Frederickson CJ. 2000a Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. *Brain Res* 852, 268–273.
- Suh SW, Frederickson CJ. 2001 Loss of vesicular zinc and appearance of perikaryal zinc after seizures induced by pilocarpine. *NeuroReport* 12, 1523–1525.
- Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ. 2000b Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. *Brain Res* 852, 274–278.
- Suh SW, Thompson RB, Zeng YA, Hough C, Li Y, Sarvey J, Frederickson CJ. 2001 Zinc signals in apical dendrites after stimulation of zinc-containing (but not zinc-free) synaptic inputs. *Soc Neurosci Abs* (in press).
- Thompson RB, Whetsell WO, Maliwal BP, Fierke CA, Frederickson CJ. 2000 Fluorescence Microscopy of stimulated Zn(II) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrase-based biosensor system. *J Neurosci Meth* **96**, 35–45

- Thompson RB, Suh SW, Fierke C, Frederickson CJ. 2001 Ratiometric quantitation of fast $\rm Zn^{2+}$ signals in the brain. *SPIE* (in press).
- Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH. 1990 Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. *Neurosci Lett* 109, 247–252.
- Toutenhoofd SL, Strehler EE. 2000 The calmodulin multigene family as a unique case of genetic redundancy, multiple levels of regulation to provide spatial and temporal control of calmodulin pools? *Cell Calcium* 28, 83–96.
- Truong-Tran AQ, Carter J, Ruffin R, Zalewski PD. 2001 New insights into the role of zinc in the respiratory epithelium. *Immunol Cell Biol* 79, 170–177.
- Vallee BL, Falchuk KH. 1993 The biochemical basis of zinc physiology. *Physiol Rev* 73, 79–118.
- Van Assche F, van Tilborg W, Waeterschoot H. 1996 Environmental Risk Assessment for Essential Elements Case Study Zinc. In: 'Report of the International Workshop on Risk Assessment of Metals and their Inorganic Compounds' Ottawa: ICME; 171–180
- Vincent SR, Semba KA. 1989 A heavy metal marker of the developing striatal mosaic. Dev Brain Res 45, 155–159.
- Vogt K, Mellor J, Tong G, Nicoll R. 2000 The actions of synaptically released zinc at hippocampal mossy fiber synapses. *Neuron* 26, 187–196.
- Walker MC, Ruiz A, Kullmann DM. 2001 Monosynaptic GABAergic Signaling from Dentate to CA3 with a Pharmacological and Physiological Profile Typical of Mossy Fiber Synapses. *Neuron* 29, 703–715.
- Weiss JH, Sensi SL, Koh JY. 2000 Zn(2+), a novel ionic mediator of neural injury in brain disease. *Trends Pharmacol Sci* 10, 395– 401.
- Weiss JH, Sensi SL. 2000 Ca²⁺-Zn²⁺ permeable AMPA or kainate receptors, possible key factors in selective neurodegeneration. *Trends Neurosci* **20**, 365–371.
- Williams, RJP. 1996 Calcium binding proteins in normal and transformed cells. Cell Calcium 20, 87–93.
- Ye B, Maret W, Vallee BL. 2001 Zinc metallothionein imported into liver mitochondria modulates respiration. *Proc Natl Acad Sci USA* 98, 2317–2322.
- Yoon YH, Jung KH, Sadun AA, Shin HC, Koh JY, Park JA, Lee JY, Sato TA, Koh JY. 2000 Co-induction of p75NTR and p75NTRassociated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. *Neurosci* 20, 9096–9103.
- Zambenedetti P, Giordano R, Zatta, P. 1998 Metallothioneins are highly expressed in astrocytes and microcapillaries in Alzheimer's disease. *J Chem Neuroanat* 15, 21–26.
- Zangger K, Oz G, Haslinger E, Kunert O, Armitage IM. 2001 Nitric oxide selectively releases metals from the N-terminal domain of metallothioneins, potential role at inflammatory sites. FASEB J 15, 1303–1305.
- ZhuGe R, Fogarty KE, Tuft RA, Lifshitz LM, Sayar K, Walsh JV Jr. 2000 Dynamics of signaling between Ca(2+) sparks and Ca(2+)- activated K(+) channels studied with a novel image-based method for direct intracellular measurement of ryanodine receptor Ca(2+) current. *J Gen Physiol* 16, 845–864.